Indexed by:
Abstract:
A low crystalline 1T-MoS2@S-doped carbon (MoS2@SC) composite was successfully synthesized via a facile hydrothermal process. The composite is comprised by few-layer 1T-MoS2 nanosheets covered by an amorphous carbon layer with an expanded interlayer d-spacing of 1.01 nm. This structure is conducive to the fast transport of lithium-ions and volume accommodation during the charge-discharge process when the composite is applied as an anode material for LIBs. Additionally, the high conductivity and layered structure of 1T-MoS2 also facilitate fast of ion/electron transport, contributing to the improvement of the electrochemical properties. Therefore, this material demonstrated a high rate performance and excellent cycling stability, with the capacities of 847 and 622 mA h g(-1) achieved at the current densities of 0.2 A g(-1) and 2 A g(-1), respectively. Even at a larger current density of 2 A g(-1), MoS2@SC delivered a high reversible capacity of 659 mA h g(-1) with an average capacity loss of 0.006% per cycle after 500 cycles. (C) 2021 Elsevier Inc. All rights reserved.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
JOURNAL OF COLLOID AND INTERFACE SCIENCE
ISSN: 0021-9797
Year: 2021
Volume: 601
Page: 411-417
9 . 9 6 5
JCR@2021
9 . 4 0 0
JCR@2023
ESI Discipline: CHEMISTRY;
ESI HC Threshold:117
JCR Journal Grade:1
CAS Journal Grade:3
Cited Count:
WoS CC Cited Count: 24
SCOPUS Cited Count: 25
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: