Indexed by:
Abstract:
Environmental investment prediction has attracted much attention in the last few years. However, there are still great challenges in investment prediction modeling, e.g., 1) effective environmental indicators must be accurately selected to avoid the curse of dimensionality; 2) effective environmental data must be reasonably selected to downsize the scale of historical data; 3) the higher interpretability and lower complexity of prediction models must be considered. To address the above three challenges, a new environmental investment prediction model using fuzzy rule-based system (FRBS), evidential reasoning (ER) approach, and subtractive clustering (SC) algorithm is proposed in the present work, called FRBS-ERSC. In this new model, the FRBS is the core component for the modeling of environmental investment prediction and therefore provides good interpretability and complexity to environmental managers. Meanwhile, the ER approach is used as an improvement technique of the FRBS to combine the strengths of different feature selection methods for better indicator selection, and the SC algorithm is used as another improvement technique of the FRBS to select effective environmental data. An empirical case of environmental investment prediction is studied based on data on 31 provinces in China ranged from 2005 to 2018. The experimental results show that the proposed FRBS-ERSC not only provides interpretable and scalable environmental investment prediction based on effective indicator selection and data selection, but also produces satisfactory accuracy compared to some existing models. (c) 2021 Elsevier B.V. All rights reserved.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
FUZZY SETS AND SYSTEMS
ISSN: 0165-0114
Year: 2021
Volume: 421
Page: 44-61
4 . 4 6 2
JCR@2021
3 . 2 0 0
JCR@2023
ESI Discipline: ENGINEERING;
ESI HC Threshold:105
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 10
SCOPUS Cited Count: 14
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0