Indexed by:
Abstract:
Covalent organic frameworks (COFs) are a class of promising photocatalysts for conversing light energy into chemical energy. Based on the tunable building blocks, COFs can be well-designed as photocatalyst for mediating reversible addition-fragmentation chain-transfer (RAFT) polymerization. Herein, 1,3,6,8-tetrakis(4-formylphenyl)pyrene (TFPPy) and 2,2 ''-bipyridine-5,5 ''-diamine (Bpy) are chosen to construct imine-based TFPPy-Bpy-COFs for catalyzing RAFT polymerization of methacrylates under white light irradiation. The well-defined polymers with precise molecular weight and narrow molecular weight distribution are obtained. The switch on/off light experiments suggest excellent temporal control toward RAFT polymerization system and the chain-extension reaction indicates high chain-end fidelity of macro-initiators. Mechanism study clarifies that the electron transfer between excited state of TFPPy-Bpy-COFs and RAFT agent can form living radicals to mediate polymerization. This methodology provides a novel platform for reversible-deactivation radical polymerization using COFs as heterogeneous catalysts.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
MACROMOLECULAR RAPID COMMUNICATIONS
ISSN: 1022-1336
Year: 2021
Issue: 20
Volume: 42
5 . 0 0 6
JCR@2021
4 . 2 0 0
JCR@2023
ESI Discipline: CHEMISTRY;
ESI HC Threshold:117
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 23
SCOPUS Cited Count: 23
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 3
Affiliated Colleges: