Indexed by:
Abstract:
Current methods for tuning the plasmonic properties of metallic nanoparticles typically rely on alternating the morphology (i.e., size and/or shape) of nanoparticles. The variation of morphology of plasmonic nanoparticles oftentimes impairs their performance in certain applications. In this study, we report an effective approach based on the control of internal structure to engineer morphology-invariant nanoparticles with tunable plasmonic properties. Specifically, these nanoparticles were prepared through selective growth of Ag on the inner surfaces of preformed Ag-Au alloyed nanocages as the seeds to form Ag@(Ag-Au) shell@shell nanocages. Plasmonic properties of the Ag@(Ag-Au) nanocages can be conveniently and effectively tuned by varying the amount of Ag deposited on the inner surfaces, during which the overall morphology of the nanocages remains unchanged. To demonstrate the potential applications of the Ag@(Ag-Au) nanocages, they were applied to colorimetric sensing of human carcinoembryonic antigen (CEA) that achieved low detection limits. This work provides a meaningful concept to design and craft plasmonic nanoparticles.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
ACS NANO
ISSN: 1936-0851
Year: 2021
Issue: 2
Volume: 15
Page: 2428-2438
1 8 . 0 2 7
JCR@2021
1 5 . 8 0 0
JCR@2023
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:142
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 49
SCOPUS Cited Count: 48
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 3
Affiliated Colleges: