Indexed by:
Abstract:
Temporal knowledge graph (TKG) embedding has received increasing attention in the academia. However, most existing methods are extensions of traditional translation models. Due to their intrinsic limitations, it is often difficult for such methods to effectively model essential characteristics of TKG, namely three basic relation patterns including symmetry/antisymmetry, inversion, and composition. In this paper, a new 3-Dimensional Rotation Temporal Embedding (3DRTE) method is proposed. Firstly, we selectively fuse temporal and relational features of fact triples by taking advantages of self-attention mechanism in processing sequential information. Then, entities are modelled as points in three-dimensional space, and the relations are interpreted as two isoclinic rotations between entities with Quaternion. Experimental results on several public datasets show that our method obtains state-of-the-art results.
Keyword:
Reprint 's Address:
Email:
Source :
IEEE ACCESS
ISSN: 2169-3536
Year: 2020
Volume: 8
Page: 207515-207523
3 . 3 6 7
JCR@2020
3 . 4 0 0
JCR@2023
ESI Discipline: ENGINEERING;
ESI HC Threshold:132
JCR Journal Grade:2
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 5
SCOPUS Cited Count: 6
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 7
Affiliated Colleges: