Indexed by:
Abstract:
Photocatalytic CO2 conversion is a promising method to yield carbon fuels, but it remains challenging to regulate catalytic materials for enhanced reaction efficiency and tunable product selectivity. This study concerns the development of a facile and efficient thermal post-treatment method to improve the crystallinity and surface hydrophobicity of a cobalt phosphide (CoP) cocatalyst, which promotes the separation and transfer of photoexcited charge carriers, reinforces CO2 chemisorption, and weakens the H2O affinity. Compared with pristine CoP, the optimal CoP-600 cocatalyst displays a 3.5-fold enhancement in activity and a 2.3-fold increase in selectivity for the reduction of CO2 to CO with a high rate of 68.1 mu mol h(-1).
Keyword:
Reprint 's Address:
Email:
Version:
Source :
CHEMSUSCHEM
ISSN: 1864-5631
Year: 2021
Issue: 5
Volume: 14
Page: 1302-1307
9 . 1 4
JCR@2021
7 . 5 0 0
JCR@2023
ESI Discipline: CHEMISTRY;
ESI HC Threshold:117
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 35
SCOPUS Cited Count: 35
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: