Indexed by:
Abstract:
Transition metal chalcogenide quantum dots (TMCs QDs) constitute a crucial sector of semiconductors on account of large absorption coefficient for light harvesting, peculiar quantum confinement effect, and abundant active sites stemming from ultra-small size. However, elaborate and tunable modulation of ani-sotropic photoinduced charge carriers over TMCs QDs represents an enduring challenge in terms of sluggish charge transfer kinetic and ultra-short charge lifetime compared with nanoparticulate counterparts, thereby rendering maneuvering charge transfer of TMCs QDs a tough issue. We herein conceptually unlock the unanticipated charge transport capability of solid-state non-conductive poly(diallyl dimethy-lammonium chloride) (PDDA) for constructing cascade charge transfer pathway over self-assembled wide bandgap semiconductors (WBS)/PDDA/TMCs QDs multilayered heterostructures, by which unidirectional and accelerated electron transfer from TMCs QDs to WBS support mediums was spontaneously activated, markedly boosting the charge separation/migration efficiency. The integrated roles of such ultrathin insulating PDDA intermediate layer as simultaneous surface charge modifying agent and interfacial charge transfer mediator have been evidenced to be universal. The unexpected electron-withdrawing capability of ultrathin PDDA layer endows WBS (SnO2, TiO2)@PDDA@TMCs (CdSe, CdS) QDs heterostructures with significantly enhanced net efficiency of photoactivities toward selective anaerobic reduction of nitroaromatics to amino derivatives under visible light irradiation. Our work would feature a promising scope for rational design of multifarious novel insulating polymers-based photosystems for solar energy conversion. (C) 2021 Elsevier Inc. All rights reserved.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
JOURNAL OF CATALYSIS
ISSN: 0021-9517
Year: 2021
Volume: 399
Page: 150-161
8 . 0 4 7
JCR@2021
6 . 5 0 0
JCR@2023
ESI Discipline: CHEMISTRY;
ESI HC Threshold:117
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 8
SCOPUS Cited Count: 8
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: