Indexed by:
Abstract:
Counting the number of people and estimating their walking speeds are essential in crowd control and flow. In this work, we propose a system that uses prevalent Wi-Fi signals to identify the number of people entering and leaving a room through a door. It selects the best subcarrier of Wi-Fi signals and applies the Hampel filter to remove outlier information first. Then, it employs a double threshold method to determine the start and end times of entering or leaving. Afterward, it compares the detected signals with the precollected database using the dynamic time-warping algorithm and determines the number of people. It uses a variance threshold method to identify the states of entering or leaving. It also employs a nonlinear fitting approach to calculate the walking speeds. The experiments show that, in a large empty laboratory, the accuracy rates in determining the number of people are 100% for one person, 81% for two persons, and 95% for three persons. In a small office, the accuracy rates for detecting the number of people are 98% for one or two persons, 82% for three persons, 93% for four, and 75% for five persons. For the walking speed estimation, the accuracy rate for a speed error of less than 0.2410 m/s is 75% for a single person.
Keyword:
Reprint 's Address:
Version:
Source :
SENSORS
ISSN: 1424-8220
Year: 2021
Issue: 10
Volume: 21
3 . 8 4 7
JCR@2021
3 . 4 0 0
JCR@2023
ESI Discipline: CHEMISTRY;
ESI HC Threshold:117
JCR Journal Grade:2
CAS Journal Grade:3
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: