• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索

author:

Wu, Jiancong (Wu, Jiancong.) [1] | Guo, Wenya (Guo, Wenya.) [2] | Ding, Zhengxin (Ding, Zhengxin.) [3] | Zhang, Jinshui (Zhang, Jinshui.) [4] | Hou, Yidong (Hou, Yidong.) [5]

Indexed by:

EI

Abstract:

Iron vanadate (FeVO4) is a promising photoanode for photoelectrochemical (PEC) water splitting because of its unique electronic band structure, in particular the bandgap of 2.1 eV. However, its PEC performance is limited by the charge recombination at transparent conducting substrate/photoanode interface. Herein, we demonstrate that the introduction of an ultrathin (1.1 nm) TiO2 layer between FTO and an FeVO4 photoanode by atomic layer deposition (ALD) technology can well address the issue of interfacial charge recombination, this is because the large valence band offset between TiO2 and FeVO4 can effectively suppress back hole transfer and subsequently improve charge separation. As expected, the modified photoanode exhibited an enhanced PEC water splitting performance. We believe that the strategy of fabricating an ultrathin TiO2 interfacial layer as a hole blocking barrier can also benefit other photoanodes. © The Royal Society of Chemistry.

Keyword:

Atomic layer deposition Iron compounds Oxide minerals Photoelectrochemical cells Titanium dioxide

Community:

  • [ 1 ] [Wu, Jiancong]State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou; 350002, China
  • [ 2 ] [Guo, Wenya]State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou; 350002, China
  • [ 3 ] [Ding, Zhengxin]State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou; 350002, China
  • [ 4 ] [Zhang, Jinshui]State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou; 350002, China
  • [ 5 ] [Hou, Yidong]State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou; 350002, China

Reprint 's Address:

Email:

Show more details

Related Keywords:

Source :

Sustainable Energy and Fuels

Year: 2021

Issue: 1

Volume: 5

Page: 261-266

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count:

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 1

Affiliated Colleges:

Online/Total:163/10838873
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1