Indexed by:
Abstract:
Hydrogen sulfide (H2S), as a hazardous gas, is often found around dump areas. Long term exposure can cause harm to health, it is highly necessary to develop some simple and sensitive methods for on-site H2S detection. Herein, a convenient photothermal assay has been designed for the quantitation of H2S using a handheld thermometer as readout. Au@Ag nanocubes (Au@Ag NCs), a core-shell nanocomposite with strong light absorption at ∼450 nm, was chosen as a novel photothermal agent in this study. Under the laser irradiation at 450 nm, the Au@Ag NCs show a strong photothermal effect, and a significant temperature enhancement can be measured by the thermometer easily. The presence of H2S can lead to the deposition of sulfur onto Au@Ag NCs, altering the localized surface plasmon resonance absorption, size, surface composition, and morphology of Au@Ag NCs and hence leading to the reduction of photothermal effect. The change of the temperature has a linear relationship with the H2S concentration in the range of 0.5–80.0 μM with a detection limit of 0.35 μM. By combining with simple sample purification procedures, the developed method has been applied to detect H2S in garbage odor gas with satisfactory results. © 2021 Elsevier B.V.
Keyword:
Reprint 's Address:
Email:
Source :
Analytica Chimica Acta
ISSN: 0003-2670
Year: 2021
Volume: 1149
6 . 9 1 1
JCR@2021
5 . 7 0 0
JCR@2023
ESI HC Threshold:117
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: