Indexed by:
Abstract:
Sustainable hydrogen fuel supply through electrochemical water splitting requires highly efficient, low-cost and robust electrocatalysts. Interface engineering is of key importance to improve the catalytic performance in a heterogeneous electrocatalytic system. Herein, a porous microcubic framework composed of a ZnO/ZnMoO4 heterostructure (ZnO@ZnMoO4) is prepared by a hybrid zeolitic imidazolate framework-derived oxidation method, and it shows much enhanced hydrogen evolution reaction (HER) activity in alkaline media. The overpotential (at 10 mA cm-2) for ZnO@ZnMoO4 is significantly reduced by 30% and 20% compared with those for virgin ZnO (v-ZnO) and polycrystalline zinc molybdenum oxide (PZMO), respectively. The enhanced electrocatalytic activity should be attributed to the ZnO/ZnMoO4 heterostructure, which can synergistically facilitate the charge transport. This work provides a more structured design strategy for electrocatalysts for future electrochemical energy conversion systems. © 2021 The Royal Society of Chemistry.
Keyword:
Reprint 's Address:
Email:
Source :
Dalton Transactions
ISSN: 1477-9226
Year: 2021
Issue: 33
Volume: 50
Page: 11365-11369
4 . 5 6 9
JCR@2021
3 . 5 0 0
JCR@2023
ESI HC Threshold:117
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 4
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 3
Affiliated Colleges: