Indexed by:
Abstract:
基于深度学习的图像超分辨率重建算法不能很好地处理现实生活中有多种复杂噪声干扰的低分辨率图片,提出一种双向的生成对抗网络,引入下采样网络及重建网络联合学习的方法.下采样网络模拟生成现实生活中有复杂噪声及受运动干扰的低分辨率图片,重建网络将模拟生成的低分辨率图片恢复为细节清晰的高分辨率图片.实验结果表明,该算法能够重建出视觉效果良好的超分辨率图像,在Set5、DIV2 K等通用测试集上,其客观评价指标(PSNR、SSIM)对比于SRGAN方法分别提高了约0.9 dB,0.25.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
计算机应用与软件
ISSN: 1000-386X
CN: 31-1260/TP
Year: 2021
Issue: 11
Volume: 38
Page: 232-235,262
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: