• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索

author:

Zeng, Huaan (Zeng, Huaan.) [1] | Chen, Qizhen (Chen, Qizhen.) [2] | Shan, Liuting (Shan, Liuting.) [3] | Yan, Yujie (Yan, Yujie.) [4] | Gao, Changsong (Gao, Changsong.) [5] | Lu, Wenjie (Lu, Wenjie.) [6] | Chen, Huipeng (Chen, Huipeng.) [7] (Scholars:陈惠鹏) | Guo, Tailiang (Guo, Tailiang.) [8] (Scholars:郭太良)

Indexed by:

EI Scopus SCIE CSCD

Abstract:

Despite recent remarkable progress in multiple synaptic devices, searching for artificial synapses with new functions is still an important task in the construction of artificial neural networks. The parallel output functionality of photoelectric signals in artificial synaptic devices is interesting and desirable as on-chip optoelectronic interconnection technology allows the connections between neurons weighted by current and light. In turn, it provides degrees of freedom and reduces circuit lead density in the design of large-scale neural networks. Hence, for the first time, a light-emitting electrochemical artificial synapse (LEEAS) based on poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylene vinylene]/poly (ethylene oxide)/lithium salt blends with dual output of photoelectric signals was developed in this study. The electrochemical redox reaction enables the device to achieve synaptic plasticity in biology and emulate the memory enhancement process, high-pass filtering characteristic, and classical Pavlov's conditioned reflex experiment. In addition, the transient luminescence intensity of the LEEAS induced by identical electric spikes exhibits a synaptic-like potentiation behavior. Owing to the combination of electroluminescence (EL) and synaptic memory behavior, an LEEAS array exhibits a unique image display and storage functions that can memorize displayed images. The LEEAS proposed in this work enriches the diversity of artificial synapses, promoting the diversified design and development of next-generation optoelectronic hybrid artificial neural networks.

Keyword:

artificial neural network light-emitting electrochemical artificial synapse photoelectric signals parallel output synaptic plasticity

Community:

  • [ 1 ] [Zeng, Huaan]Fuzhou Univ, Inst Optoelect Display, Natl & Local United Engn Lab Flat Panel Display T, Fuzhou 350002, Peoples R China
  • [ 2 ] [Chen, Qizhen]Fuzhou Univ, Inst Optoelect Display, Natl & Local United Engn Lab Flat Panel Display T, Fuzhou 350002, Peoples R China
  • [ 3 ] [Shan, Liuting]Fuzhou Univ, Inst Optoelect Display, Natl & Local United Engn Lab Flat Panel Display T, Fuzhou 350002, Peoples R China
  • [ 4 ] [Yan, Yujie]Fuzhou Univ, Inst Optoelect Display, Natl & Local United Engn Lab Flat Panel Display T, Fuzhou 350002, Peoples R China
  • [ 5 ] [Gao, Changsong]Fuzhou Univ, Inst Optoelect Display, Natl & Local United Engn Lab Flat Panel Display T, Fuzhou 350002, Peoples R China
  • [ 6 ] [Lu, Wenjie]Fuzhou Univ, Inst Optoelect Display, Natl & Local United Engn Lab Flat Panel Display T, Fuzhou 350002, Peoples R China
  • [ 7 ] [Chen, Huipeng]Fuzhou Univ, Inst Optoelect Display, Natl & Local United Engn Lab Flat Panel Display T, Fuzhou 350002, Peoples R China
  • [ 8 ] [Guo, Tailiang]Fuzhou Univ, Inst Optoelect Display, Natl & Local United Engn Lab Flat Panel Display T, Fuzhou 350002, Peoples R China
  • [ 9 ] [Zeng, Huaan]Fujian Sci & Technol Innovat Lab Optoelect Inform, Fuzhou 350100, Peoples R China
  • [ 10 ] [Chen, Qizhen]Fujian Sci & Technol Innovat Lab Optoelect Inform, Fuzhou 350100, Peoples R China
  • [ 11 ] [Shan, Liuting]Fujian Sci & Technol Innovat Lab Optoelect Inform, Fuzhou 350100, Peoples R China
  • [ 12 ] [Yan, Yujie]Fujian Sci & Technol Innovat Lab Optoelect Inform, Fuzhou 350100, Peoples R China
  • [ 13 ] [Gao, Changsong]Fujian Sci & Technol Innovat Lab Optoelect Inform, Fuzhou 350100, Peoples R China
  • [ 14 ] [Lu, Wenjie]Fujian Sci & Technol Innovat Lab Optoelect Inform, Fuzhou 350100, Peoples R China
  • [ 15 ] [Chen, Huipeng]Fujian Sci & Technol Innovat Lab Optoelect Inform, Fuzhou 350100, Peoples R China
  • [ 16 ] [Guo, Tailiang]Fujian Sci & Technol Innovat Lab Optoelect Inform, Fuzhou 350100, Peoples R China

Reprint 's Address:

Show more details

Related Keywords:

Source :

SCIENCE CHINA-MATERIALS

ISSN: 2095-8226

CN: 10-1236/TB

Year: 2022

Issue: 9

Volume: 65

Page: 2511-2520

8 . 1

JCR@2022

6 . 8 0 0

JCR@2023

ESI Discipline: MATERIALS SCIENCE;

ESI HC Threshold:91

JCR Journal Grade:1

CAS Journal Grade:2

Cited Count:

WoS CC Cited Count: 13

SCOPUS Cited Count: 14

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 1

Online/Total:219/10040687
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1