• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索

author:

Zhao, Yulai (Zhao, Yulai.) [1] (Scholars:赵玉来) | Wang, Anjun (Wang, Anjun.) [2] | Shen, Lianzhi (Shen, Lianzhi.) [3] | Zhao, Zhikui (Zhao, Zhikui.) [4] | Xiao, Longqiang (Xiao, Longqiang.) [5] (Scholars:肖龙强) | Hou, Linxi (Hou, Linxi.) [6] (Scholars:侯琳熙)

Indexed by:

EI Scopus SCIE

Abstract:

Heteroatom doped carbonaceous material with high specific surface area (SSA) is vital for assembling advanced supercapacitor. Here, a moderate and valid strategy is proposed to synthesize N, S co-doped porous carbons (NSPCs) which are derived from porous resorcinol-melamine-formaldehyde-thiourea (RMFT) resins via high internal phase emulsion (HIPE) template. The morphology, structure, porous characteristics and chemical ingredients of the prepared NSPCs are investigated by SEM, XRD, Raman spectra, and XPS systematically. The obtained NSPCs show typical open-cell morphology. As the molar ratio of thiourea to melamine (T/M) increased from 0:1 to 2:1, the SSA of NSPC increases gradually from 927 to 1721 m(2) g(-1). Electrochemical tests show that when T/M is 2:1, the specific capacity of NSPC reaches 213.5 F g(-1) at 1 A g(-1). After 10,000 charge-discharge cycles at 10 A g(-1), the retention ratio of specific capacitance is 99.6%, indicating an excellent cycling stability. Excellent performances together with facile preparation make NSPC via HIPE template a potential candidate as electrode of advanced supercapacitors.

Keyword:

electrochemistry emulsion polymerization porous materials resins

Community:

  • [ 1 ] [Zhao, Yulai]Fuzhou Univ, Coll Chem Engn, Dept Mat Oriented Chem Engn, Fuzhou 350116, Peoples R China
  • [ 2 ] [Wang, Anjun]Fuzhou Univ, Coll Chem Engn, Dept Mat Oriented Chem Engn, Fuzhou 350116, Peoples R China
  • [ 3 ] [Shen, Lianzhi]Fuzhou Univ, Coll Chem Engn, Dept Mat Oriented Chem Engn, Fuzhou 350116, Peoples R China
  • [ 4 ] [Zhao, Zhikui]Fuzhou Univ, Coll Chem Engn, Dept Mat Oriented Chem Engn, Fuzhou 350116, Peoples R China
  • [ 5 ] [Xiao, Longqiang]Fuzhou Univ, Coll Chem Engn, Dept Mat Oriented Chem Engn, Fuzhou 350116, Peoples R China
  • [ 6 ] [Hou, Linxi]Fuzhou Univ, Coll Chem Engn, Dept Mat Oriented Chem Engn, Fuzhou 350116, Peoples R China
  • [ 7 ] [Zhao, Yulai]Qingyuan Innovat Lab, Quanzhou, Peoples R China
  • [ 8 ] [Xiao, Longqiang]Qingyuan Innovat Lab, Quanzhou, Peoples R China
  • [ 9 ] [Hou, Linxi]Qingyuan Innovat Lab, Quanzhou, Peoples R China

Reprint 's Address:

Show more details

Related Keywords:

Source :

JOURNAL OF APPLIED POLYMER SCIENCE

ISSN: 0021-8995

Year: 2022

Issue: 25

Volume: 139

3 . 0

JCR@2022

2 . 7 0 0

JCR@2023

ESI Discipline: CHEMISTRY;

ESI HC Threshold:74

JCR Journal Grade:2

CAS Journal Grade:3

Cited Count:

WoS CC Cited Count: 8

SCOPUS Cited Count: 8

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 1

Online/Total:140/10019513
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1