Indexed by:
Abstract:
To buffer the volume expansion of silicon during charge-discharge process, a 3D carbon-coated stable silicon/graphene/CNT (C@Si/GN/CNT/PDA-C) composite was prepared. Si nanoparticles (SiNPs) were first modified by hexadecyl trimethyl ammonium bromide (CTAB) to enhance their stability and dispersibility in water, then uniformly distributed in graphene/carbon nanotubes (GN/CNT) by electrostatic self-assembly, and ultimately encapsulated by carbonized poly-dopamine carbon layer (PDA-C) at high temperature. PDA-C not only alleviates the volume expansion of Si and inhibits the direct contact of Si with electrolyte, but also acts as a bridge between the conductive GN/CNT and Si to maintain electrode integrity. As an anode material for lithium-ion batteries, the C@Si/GN/CNT/PDA-C exhibits a superior reversible capacity of 1946 mAh g(-1) after 100 cycles with the capacity retention of 68.9% at a current density of 0.1 A g(-1) , and over 1306 mAh g(-1) after 100 cycles at 1 A g(-1). The excellent electrochemical performance of C@Si/GN/CNT/PDA-C is attributed to the stable hierarchical structure. (C) 2021 Published by Elsevier Ltd.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
ELECTROCHIMICA ACTA
ISSN: 0013-4686
Year: 2022
Volume: 404
6 . 6
JCR@2022
5 . 5 0 0
JCR@2023
ESI Discipline: CHEMISTRY;
ESI HC Threshold:74
JCR Journal Grade:2
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 53
SCOPUS Cited Count: 55
ESI Highly Cited Papers on the List: 1 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: