Indexed by:
Abstract:
The temperature field distribution has a significant influence on structural performance, thermal deformation, and thermal error compensation. To improve the prediction accuracy of the temperature distribution of the spindle system, a comprehensive model considering the contact thermal resistance (TCR) of the interfaces was established to analyze the thermal performance of the high-speed spindle system in the present work. An elastoplastic contact model was used to calculate the contacting areas and loads of interfaces, which were employed to establish the contact thermal resistance model of the primary interfaces of the spindle, such as bearing rings and tool holders. Based on the TCR parameters, a finite element analysis (FEA) model was proposed to analyze the temperature distribution of the spindle system. And a temperature test experiment was set up to verify the accuracy of the FEA model. The results show that the relative errors of representative test points were all less than 5%, which means the established model can appropriately reflect the temperature field distribution of the spindle.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
ISSN: 0268-3768
Year: 2022
Issue: 7-8
Volume: 120
Page: 5259-5268
3 . 4
JCR@2022
2 . 9 0 0
JCR@2023
ESI Discipline: ENGINEERING;
ESI HC Threshold:66
JCR Journal Grade:2
CAS Journal Grade:3
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: