Indexed by:
Abstract:
The driving trip pattern is of great significance in hydrogen consumption and battery Longevity of the plug-in fuel cell hybrid electric vehicles (PFCHEV). However, the traditional energy management strategy failed to consider the uncertainty of driving patterns. To overcome this drawback, a deep Q-learning network based trip pattern adaptive (DQN-TPA) battery longevity-conscious strategy is proposed in this study. To begin with, the trip pattern recognition based Learning Vector Quantization Neural Network is devised for pattern identification, and the adaptive-equivalent consumption minimizes strategy (A-ECMS) is conducted to improve the hydrogen consumption. Then, a TPA longevity-conscious strategy is developed and compared with the conventional multi-criteria (MC) optimization strategy to investigate the discrepancy brought by the pattern adaptation. And finally, in combination with the above efforts, an improved DQN-TPA based battery longevity-conscious strategy has been established accordingly. The advances are confirmed by the validation results that, the A-ECMS makes an 11.76% promotion in fuel economy by taking the deviation among different driving patterns into concern. The TPA strategy shows more adaptiveness than the MC optimization strategy in which, the effective Ah-throughput is 5.17% lower than MC-based while keeping the same economy. Further improvement can be achieved by the modified DQN-TPA based approach by remedying the imperfection of TPA-based recognition delay and performing the economy and durability conscious actions with 5.87% further reduction of effective Ah-throughput without observably sacrificing the fuel economy. Furthermore, the effectiveness and adaptiveness of the proposed strategy are validated by the Hardware-in-the-Loop experiments. Both the numerical validation and semi-physical validation results indicate that the DQN-TPA based approach made it possible to develop the battery longevity-conscious strategy capable of significantly adapting various driving patterns and improving the hydrogen consumption and battery durability performance of the PFCHEV. © 2022 Elsevier Ltd
Keyword:
Reprint 's Address:
Email:
Source :
Applied Energy
ISSN: 0306-2619
Year: 2022
Volume: 321
1 1 . 2
JCR@2022
1 0 . 1 0 0
JCR@2023
ESI HC Threshold:66
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 12
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 3
Affiliated Colleges: