Indexed by:
Abstract:
Metal rubber has been extensively used in recent years due to its several unique properties, especially in adverse environments. Although many experimental studies have been conducted, theoretical research on metal rubber is still in its infancy. In this work, a dynamic model for the nonlinear characteristics of pot-shaped metal rubber is established on the basis of the asymmetric dynamic model of the wire rope shock absorber and the trace method model. In addition, the corresponding parameters in the model are identified based on the parameter-separation method. The theoretical hysteresis loop obtained using the model and the measured hysteresis loop agree with each other. The results show that the asymmetric dynamic model can better describe the asymmetric dynamic characteristics of pot-shaped metal rubber. Furthermore, a pot-shaped metal rubber vibration reduction system is built to further verify the correctness of the model. This study provides an experimental reference and a theoretical basis for the practical application of pot-shaped metal rubber in the field of three-dimensional vibration reduction.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
MATERIALS
ISSN: 1996-1944
Year: 2022
Issue: 17
Volume: 15
3 . 4
JCR@2022
3 . 1 0 0
JCR@2023
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:91
JCR Journal Grade:2
CAS Journal Grade:3
Cited Count:
WoS CC Cited Count: 12
SCOPUS Cited Count: 12
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: