Indexed by:
Abstract:
The synergistic piezo-photocatalysis with enhanced efficiency for degrading obstinate pollutants in wastewater is considered as an advanced way to ameliorate the global water contamination. In this work, we report a facile route to construct the Bi0.5Na0.5TiO3@Ag composite by photoreduction of AgNO3 to obtain Ag on Bi0.5Na0.5TiO3 nanoparticles. And the composite was used to degrade three representative pollutants, i.e. ciprofloxacin, methyl orange and mitoxantrone hydrochloride. Remarkably, for methyl orange solution with the initial concentration of 10 mg/L, the degradation rate constant of the composite reached 0.051 min(-1). H+ and center dot O-2(-) play a major role in this degradation process, verified by the radical quenching experiments. The absorption platform of Bi0.5Na0.5TiO3 was located in the UV region, after introducing Ag in the composite, the absorption region broadened to both UV and visible light, greatly promoting the response to light. Simultaneously, the induced piezo-potential by mechanical energy in Bi0.5Na0.5TiO3 hindered the carrier recombination, resulting in high -efficiency synergistic piezo-photocatalytic process. This work provides a paradigm to innovate both material and catalytic way for degrading multiple organic pollutants.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
JOURNAL OF ENVIRONMENTAL MANAGEMENT
ISSN: 0301-4797
Year: 2022
Volume: 323
8 . 7
JCR@2022
8 . 0 0 0
JCR@2023
ESI Discipline: ENVIRONMENT/ECOLOGY;
ESI HC Threshold:64
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 18
SCOPUS Cited Count: 26
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1