Indexed by:
Abstract:
The construction of heterojunctions is a promising manner to accelerate the separation and transfer of the charge carriers at the interface. Herein, a binary poly(heptazine-triazine) imides (PHI/PTI) with semi-coherent interfaces was fabricated via a facile two-step salt-melt synthetic process. The built-in electric fields at the semi-coherent interface endow prompt exciton splitting and charge carrier separation. Hence, the optimized PHI/PTI-based copolymer presents a high apparent quantum yield (AQY=64 %) for visible-light driven hydrogen production, by the aids of K2HPO4 as charge transfer mediator. This study provides physical insights for the rational promotion of the photocatalytic performance from the viewpoint of interfacial engineering of photocatalytic junctions on crystalline carbon nitride based semiconductors.
Keyword:
Reprint 's Address:
Version:
Source :
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
ISSN: 1433-7851
Year: 2022
Issue: 47
Volume: 61
1 6 . 6
JCR@2022
1 6 . 1 0 0
JCR@2023
ESI Discipline: CHEMISTRY;
ESI HC Threshold:74
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 37
SCOPUS Cited Count: 71
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: