Indexed by:
Abstract:
为了有效解决电动汽车充电目的地优化和充电路径规划问题,以及充电引导的在线实时决策问题,建立了考虑多种不确定因素的电动汽车充电引导双层优化模型,提出了一种基于分层增强深度Q网络强化学习(HEDQN)的电动汽车充电引导方法.所提HEDQN算法采用基于Huber损失函数的双竞争型深度Q网络算法,并包含2层增强深度Q网络(eDQN)算法.上层eDQN用于对电动汽车充电目的地的优化;在此基础上,下层eDQN用于对电动汽车充电路径的实时优化.最后,在某城市交通网络中对所提HEDQN算法进行仿真验证,仿真结果表明相比基于Dijkstra最短路径的就近推荐算法、单层深度Q网络强化学习算法和传统的分层深度Q网络强化学习算法,所提HEDQN算法能够有效降低电动汽车充电费用,实现电动汽车在线实时的充电引导.此外还验证了所提HEDQN算法在仿真环境变化后的适应性.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
电力自动化设备
ISSN: 1006-6047
Year: 2022
Issue: 10
Volume: 42
Page: 264-272
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: