Indexed by:
Abstract:
Instead of the conventional perception of nitrous oxide (N2O) as a potent greenhouse gas whose production should be minimized, this work aimed to assess N2O recovery as a potential energy source from nitric oxide (NO) in the form of Fe(II)EDTA-NO through element sulfur (S0) or thiosulfate (S2O32- )-driven NO-based autotrophic denitrification (SNADS0 or SNADS2O3). A mathematical model was proposed to describe substrate dynamics related to N2O production and reduction and was successfully calibrated and validated using batch experimental data from lab-scale SNADS0 and SNADS2O3 systems under different substrates conditions. The model was subsequently employed to assess the potential of N2O accumulation and recovery by altering the S/N mass ratio and the ratio of gas volume to liquid volume of the system. The simulation results suggested that with a S/N mass ratio of nearly 1.0, high-purity N2O could be more rapidly and efficiently recovered from Fe(II)EDTA-NO in the SNADS0 and SNADS2O3 systems with a higher ratio of gas volume to liquid volume (i.e., a N2O recovery efficiency of up to 80.2%-84.9% reached within 3.1 h-3.5 h under the studied conditions). Comparatively, the SNADS0 process showed an economic and viable advantage for practical applications to the efficient treatment and resource utilization of NO-containing flue gas.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
CHEMICAL ENGINEERING JOURNAL
ISSN: 1385-8947
Year: 2023
Volume: 453
1 3 . 4
JCR@2023
1 3 . 4 0 0
JCR@2023
ESI Discipline: ENGINEERING;
ESI HC Threshold:35
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 5
SCOPUS Cited Count: 10
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: