Indexed by:
Abstract:
Pandemics such as COVID-19 have exposed global inequalities in essential health care. Here, we proposed a novel analytics of nucleic acid amplification tests (NAATs) by combining paper microfluidics with deep learning and cloud computing. Real-time amplifications of synthesized SARS-CoV-2 RNA templates were performed in paper devices. Information pertained to on-chip reactions in time-series format were transmitted to cloud server on which deep learning (DL) models were preloaded for data analysis. DL models enable prediction of NAAT results using partly gathered real-time fluorescence data. Using information provided by the G-channel, accurate prediction can be made as early as 9 min, a 78% reduction from the conventional 40 min mark. Reaction dy-namics hidden in amplification curves were effectively leveraged. Positive and negative samples can be unbiasedly and automatically distinguished. Practical utility of the approach was validated by cross-platform study using clinical datasets. Predicted clinical accuracy, sensitivity and specificity were 98.6%, 97.6% and 99.1%. Not only the approach reduced the need for the use of bulky apparatus, but also provided intelligent, distributable and robotic insights for NAAT analysis. It set a novel paradigm for analyzing NAATs, and can be combined with the most cutting-edge technologies in fields of biosensor, artificial intelligence and cloud computing to facilitate fundamental and clinical research.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
BIOMEDICAL SIGNAL PROCESSING AND CONTROL
ISSN: 1746-8094
Year: 2023
Volume: 83
4 . 9
JCR@2023
4 . 9 0 0
JCR@2023
ESI Discipline: ENGINEERING;
ESI HC Threshold:35
JCR Journal Grade:1
CAS Journal Grade:3
Cited Count:
WoS CC Cited Count: 8
SCOPUS Cited Count: 4
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: