Indexed by:
Abstract:
Hydrogen has a high energy density of approximately 120 to 140 MJ kg(-1), which is very high compared to other natural energy sources. However, hydrogen generation through electrocatalytic water splitting is a high electricity consumption process due to the sluggish oxygen evolution reaction (OER). As a result, hydrogen generation through hydrazine-assisted water electrolysis has recently been intensively investigated. The hydrazine electrolysis process requires a low potential compared to the water electrolysis process. Despite this, the utilization of direct hydrazine fuel cells (DHFCs) as portable or vehicle power sources necessitates the development of inexpensive , effective anodic hydrazine oxidation catalysts. Here, we prepared oxygen-deficient zinc-doped nickel cobalt oxide (Zn-NiCoOx-z) alloy nanoarrays on stainless steel mesh (SSM) using a hydrothermal synthesis method followed by thermal treatment. Furthermore, the prepared thin films were used as electrocatalysts , the OER and hydrazine oxidation reaction (HzOR) activities were investigated in three-and two-electrode systems. In a three-electrode system, Zn-NiCoOx-z/SSM HzOR requires-0.116 V (vs RHE) potential to achieve a 50 mA cm(-2) current density, which is dramatically lower than the OER potential (1.493 V vs RHE). In a two-electrode system (Zn-NiCoOx-z/SSM(-)IIZn-NiCoOx-z/SSM(+)), the overall hydrazine splitting potential (OHzS) required to reach 50 mA cm(-2) is only 0.700 V, which is dramatically less than the required potential for overall water splitting (OWS). These excellent HzOR results are due to the binder-free oxygen-deficient Zn-NiCoOx-z/ SSM alloy nanoarray, which provides a large number of active sites and improves the wettability of cat-alysts after Zn doping. (C) 2023 Elsevier Inc. All rights reserved.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
JOURNAL OF COLLOID AND INTERFACE SCIENCE
ISSN: 0021-9797
Year: 2023
Volume: 640
Page: 737-749
9 . 4
JCR@2023
9 . 4 0 0
JCR@2023
ESI Discipline: CHEMISTRY;
ESI HC Threshold:39
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 15
SCOPUS Cited Count: 5
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: