Indexed by:
Abstract:
Recently, the short-chain fatty acids (SCFAs) production with carbon recovery from waste activated sludge has received increasing attention. Despite that numerous approaches have been investigated, the divalent cation chelation towards enhancing anaerobic fermentation and the carbon migration fates has been rarely reported. This work attempted to chelate structural divalent cations from sludge flocs by sodium pyrophosphate (SP) at the dosages of 0-0.6 g/g SS, facilitating sludge disintegration and hydrolysis with particulate organic matters sol-ubilization. At the optimal SP dosage of 0.4 g/g SS, the chemical oxygen demand (COD) and carbon source content in sludge solid were reduced by 45.24 % and 35.50 % within 1-day treatment, leading to considerable sludge hydrolysis and carbon release performances with soluble COD/total COD of 23.21 % and carbon release rate of 26.94 % in 2-day anaerobic fermentation, respectively. Numerous SCFAs of 237.43 mg COD/g VSS were produced by 4-day anaerobic fermentation, with the overall carbon recovery rate of 21.19 %, which were dominantly composed by acetate and propionate. Meanwhile, the SP-inhibited biogas generation also contrib-uted to SCFAs accumulation. The divalent cation chelation obviously improved rate constant and equilibrium performances of anaerobic fermentation process, which were 1.81-5.21 and 1.36-2.82 times higher than those without SP, respectively. The carbon migration pattern was proposed by interphase carbon source balance and the mechanism was also illustrated. The crucial novelty was to propose an innovative and economic sludge hydrolysis pattern by divalent cation chelation towards improving carbon recovery.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
CHEMICAL ENGINEERING JOURNAL
ISSN: 1385-8947
Year: 2023
Volume: 457
1 3 . 4
JCR@2023
1 3 . 4 0 0
JCR@2023
ESI Discipline: ENGINEERING;
ESI HC Threshold:35
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 18
SCOPUS Cited Count: 19
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: