Indexed by:
Abstract:
Constructing heterojunction interface as an active catalyst is an effective strategy to boost electrocatalytic activity of oxygen evolution reaction (OER). Herein, we report an interfacial CoP/CeO2 heterostructure catalyst constructed by interface engineering and selective phosphorization procedure. X-ray photoelectron spectroscopy (XPS) suggests that coupling CeO2 nanoparticles on the surface of CoP will generate interfacial interaction at the two-phase interface, resulting in electron transfer between CoP and CeO2 components at the interface. Benefitting from the interfacial interaction, large exposed interface area, and luxuriant mesopores structure, CoP/CeO2 shows fascinating alkaline OER performance. At the current densities of 10 and 50 mA cm−2, the optimal CoP/CeO2 heterojunction exhibits lower overpotential (257 and 298 mV) than either CoP (288 and 354 mV) or RuO2 (305 and 409 mV). This work provides a facile synthetic protocol for constructing heterostructure interfaces to improve OER performance. © 2023 Chinese Society of Particuology and Institute of Process Engineering, Chinese Academy of Sciences
Keyword:
Reprint 's Address:
Email:
Source :
Particuology
ISSN: 1674-2001
Year: 2023
Volume: 81
Page: 38-44
4 . 1
JCR@2023
4 . 1 0 0
JCR@2023
ESI HC Threshold:49
JCR Journal Grade:2
CAS Journal Grade:3
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 9
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 3
Affiliated Colleges: