Indexed by:
Abstract:
Explosion venting and inerting are two commonly used explosion protective measures in hydrogen-based industries, both of them are effective in reducing the maximum explosion overpressure when used alone. However, the coupling effects of venting and inerting on hydrogen deflagrations have not been well understood. To this end, experiments were carried out in a 1 m high top-vented vessel with a cross-section area of 0.3 m×0.3 m to investigate the effects of nitrogen volume fraction (φ) in the range of 0 to 50% by volume on vented hydrogen-air explosions with a fixed equivalence ratio. The premixed hydrogen-nitrogen-air mixtures obtained according to Dolton’s law of partial pressure were ignited in the center of the vented container by an electric spark with an energy of about 500 mJ. A 0.75-m long transparent window was installed in the center of the vented container, through which the flame images in the container were recorded by a high-speed camera at 2 000 frames per second. The pressure-time histories within and outside the vented container were measured by four piezoresistive pressure sensors with a measuring range of 0–150 kPa. The experimental results reveal that φ significantly affects the vented deflagration of hydrogen-air mixtures. The pressure peak owing to the external explosion dominates the internal pressure-time histories when φ≤40% and that resulting from the rupture of vent cover becomes dominant for higher values of φ. Under the current experimental conditions, Helmholtz-type oscillations with a frequency decreasing with φ are always observed, and acoustic oscillations appear in the tests only for φ=25%, 30%. The maximum internal explosion overpressures (pmax) near the vent, at the center of the vessel, and near the bottom of the vessel decrease with increasing φ. Moreover, the highest overall pmax is obtained always near the bottom of the vessel. However, the difference of pmax between the three measuring points is negligible when φ is larger than 40%. The maximum external explosion overpressure decreases with increasing φ. In addition, significant effects of the external explosion on the internal pressure-time histories are observed in all tests, regardless of its explosion overpressure. © 2022 Explosion and Shock Waves. All rights reserved.
Keyword:
Reprint 's Address:
Email:
Source :
Explosion and Shock Waves
ISSN: 1001-1455
CN: 51-1148/O3
Year: 2022
Issue: 12
Volume: 42
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 1
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: