Indexed by:
Abstract:
A Fe-loaded Bi2O2S nanosheet photoanode serving as photoelectric biomonitoring platform for the detection of prostate-specific antigen (PSA) using biologically inspired prussian nanoparticle (PB)-catalyzed biocatalytic precipitation strategy was developed. Primarily, the signal probe PB-mAb2 obtained by electrostatic adsorption was immobilized on a microplate in the presence of target PSA, and 4-chloro-1-naphthol (4-CN) was oxidized to benzo-4-chloro-hexadienone (4-CD) with the assistance of exogenous hydrogen peroxide, which was generated by a large number of hydroxyl radicals catalyzed by PB. The generated 4-CD showed strongly low conductivity characteristics to burst the photocurrent of highly photoactive Fe-Bi2O2S photoanode. The split incubation re-action could be suitable for high volume and low-cost rapid detection. A dynamic response range of 0.1-100 ng mL-1 with a limit of detection of 34.2 pg mL-1 was achieved with the sensor based on a photoelectric sensing platform and a biomimetic catalytic precipitation reaction. Equally important, the sensor also showed good potential in the detection of real samples compared to commercially available ELISA kits. In conclusion, this work provides a fresh scheme for the development of sensitive biosensors through a bio-inspired catalytic strategy of versatility and a photoanode coupling with high photoelectric activity.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
ANALYTICA CHIMICA ACTA
ISSN: 0003-2670
Year: 2023
Volume: 1252
5 . 7
JCR@2023
5 . 7 0 0
JCR@2023
ESI Discipline: CHEMISTRY;
ESI HC Threshold:39
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 20
SCOPUS Cited Count: 20
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: