Indexed by:
Abstract:
The development of high-efficiency oxygen evolution reaction (OER) electrocatalysts is of great impor-tance for electrolytic H2 generation. In this work, we report in-situ growth of MnCo2O4 nanoneedles and NiFeRu layered double hydroxide (LDH) nanosheets on nickel foam (NF) (MnCo2O4@NiFeRu-LDH/ NF) that can function a highly efficient electrode toward electrocatalysis of OER. Such electrode demands an overpotential of as low as 205 mV to reach 10 mA cm-2 in alkaline electrolyte and can run stably over 120-hours continuous operation. A hybrid flow acid/alkali electrolyzer is set up by using the Pt/C as the acidic cathode coupling with the MnCo2O4@NiFeRu-LDH/NF as the alkaline anode, which only requires an applied voltage of 0.59 V and 0.94 V to attain an electrolytic current density of 10 mA cm-2 and 100 mA cm-2, respectively. The present work could push forward the further development of the electricity-saving electrolytic technique for H2 generation.(c) 2023 Published by Elsevier Inc.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
JOURNAL OF COLLOID AND INTERFACE SCIENCE
ISSN: 0021-9797
Year: 2023
Volume: 636
Page: 610-617
9 . 4
JCR@2023
9 . 4 0 0
JCR@2023
ESI Discipline: CHEMISTRY;
ESI HC Threshold:39
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 10
SCOPUS Cited Count: 11
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: