• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索

author:

Wu, Xuezhen (Wu, Xuezhen.) [1] (Scholars:吴学震) | Zheng, Hanfang (Zheng, Hanfang.) [2] | Jiang, Yujing (Jiang, Yujing.) [3]

Indexed by:

EI Scopus SCIE

Abstract:

Many experiments have been performed to study the mechanical behavior of rock bolts in resisting the shear force. However, almost all the tests were conducted on smooth rock joints, which is inconsistent with the field engineering practice. In this paper, the shear behavior of fully encapsulated rock bolts and energy-absorbing rock bolts inserted in the rough joints was investigated with a series of single shear tests under constant normal load (CNL) conditions. For all specimens, when the value of JRC increases gradually, the value of peak shear stress increases gradually. The ultimate shear displacement of an energy-absorbing rock bolt is larger than that of a fully encapsulated rock bolt for the same JRC condition, and they all decrease with the increase of JRC. The sensitivity of the energy-absorbing bolt to JRC change is lower than a fully encapsulated rock bolt. A dimen-sionless mathematical model was established to predict the ultimate shear displacement of rock bolts inserted in different roughness conditions. The ultimate shear displacement of the rock bolt was evaluated as a linear function of JRC. Two tests with natural rough joints were conducted to verify the applicability of the proposed empirical model for the natural rough joints. The predicted values of the ultimate shear displacement of rock bolts indicated good agreement with the test results. The proposed model is capable of providing an accurate evaluation of the ultimate shear displacement of rock bolts inserted in rough joints. The results of the laboratory test and mathematical model all show that the energy-absorbing bolt can bear a larger shear displacement and adapt to different joint roughness.

Keyword:

Empirical model Energy-absorbing rock bolt Fully encapsulated rock bolt Joint roughness coefficient Shear displacement

Community:

  • [ 1 ] [Wu, Xuezhen]Fuzhou Univ, Coll Civil Engn, Fuzhou 350108, Peoples R China
  • [ 2 ] [Zheng, Hanfang]Fuzhou Univ, Coll Civil Engn, Fuzhou 350108, Peoples R China
  • [ 3 ] [Jiang, Yujing]Fuzhou Univ, Coll Civil Engn, Fuzhou 350108, Peoples R China
  • [ 4 ] [Jiang, Yujing]Nagasaki Univ, Sch Engn, 1-14 Bunkyo, Nagasaki 8528521, Japan

Reprint 's Address:

  • 蒋宇静

    [Jiang, Yujing]Fuzhou Univ, Coll Civil Engn, Fuzhou 350108, Peoples R China

Show more details

Version:

Related Keywords:

Source :

INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES

ISSN: 1365-1609

Year: 2023

Volume: 163

7 . 0

JCR@2023

7 . 0 0 0

JCR@2023

ESI Discipline: GEOSCIENCES;

ESI HC Threshold:26

JCR Journal Grade:1

CAS Journal Grade:1

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count: 3

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 0

Online/Total:125/10052143
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1