• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索

author:

Zhou, T. (Zhou, T..) [1] | Fang, R.-Z. (Fang, R.-Z..) [2] | Jia, D. (Jia, D..) [3] | Yang, P. (Yang, P..) [4] | Ren, Z.-Y. (Ren, Z.-Y..) [5] | Bai, H.-B. (Bai, H.-B..) [6]

Indexed by:

Scopus CSCD

Abstract:

Entangled porous metallic wire material (EPMWM) has the potential as a thermal insulation material in defence and engineering. In order to optimize its thermophysical properties at the design stage, it is of great significance to reveal the thermal response mechanism of EPMWM based on its complex structural effects. In the present work, virtual manufacturing technology (VMT) was developed to restore the physics-based 3D model of EPMWM. On this basis, the transient thermal analysis is carried out to explore the contact-relevant thermal behavior of EPMWM, and then the spiral unit containing unique structural information are further extracted and counted. In particular, the thermal resistance network is numerically constructed based on the spiral unit through the thermoelectric analogy method to accurately predict the effective thermal conductivity (ETC) of EPMWM. Finally, the thermal diffusivity and specific heat of the samples were obtained by the laser thermal analyzer to calculate the ETC and thermal insulation factor of interest. The results show that the ETC of EPMWM increases with increasing temperature or reducing density under the experimental conditions. The numerical prediction is consistent with the experimental result and the average error is less than 4%. © 2022 China Ordnance Society

Keyword:

Effective thermal conductivity (ETC) Entangled porous metallic wire material (EPMWM) Thermal insulation factor Thermal resistance network Virtual manufacturing technology (VMT)

Community:

  • [ 1 ] [Zhou T.]92578 Troops of the Chinese People's Liberation Army, Beijing, 100055, China
  • [ 2 ] [Fang R.-Z.]School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, 350116, China
  • [ 3 ] [Fang R.-Z.]Institute of Metal Rubber & Vibration Noise, Fuzhou University, Fujian, Fuzhou, 350116, China
  • [ 4 ] [Jia D.]92578 Troops of the Chinese People's Liberation Army, Beijing, 100055, China
  • [ 5 ] [Yang P.]92578 Troops of the Chinese People's Liberation Army, Beijing, 100055, China
  • [ 6 ] [Ren Z.-Y.]School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, 350116, China
  • [ 7 ] [Ren Z.-Y.]Institute of Metal Rubber & Vibration Noise, Fuzhou University, Fujian, Fuzhou, 350116, China
  • [ 8 ] [Bai H.-B.]School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, 350116, China
  • [ 9 ] [Bai H.-B.]Institute of Metal Rubber & Vibration Noise, Fuzhou University, Fujian, Fuzhou, 350116, China

Reprint 's Address:

Email:

Show more details

Related Keywords:

Source :

Defence Technology

ISSN: 2096-3459

Year: 2023

Volume: 23

Page: 177-188

5 . 0

JCR@2023

5 . 0 0 0

JCR@2023

ESI HC Threshold:35

JCR Journal Grade:1

CAS Journal Grade:2

Cited Count:

WoS CC Cited Count: 0

SCOPUS Cited Count: 3

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 0

Affiliated Colleges:

Online/Total:137/10018998
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1