Indexed by:
Abstract:
Compounds with redox activities have appealing applications in catalytic, electronic and magnetic properties, but the redox inert of polyoxoniobates (PONbs) significantly limits their applications for a long time. In this work, we are able to integrate organophosphate and lanthanide cluster into PONb to create the first family of inorganic-organic hybrid organophosphate-Ln-PONb composite clusters. These novel species not only present the first family of redox active PONbs that can be reduced to form long-lived 'heteropoly blues' under ambient conditions, but also a new photochromic system. More importantly, the analyses of the electronic configurations and photochromic properties for a series of designed proof-of-concept PONbs models allow us to discover a D-f-A electron transfer mechanism, that is, photoinduced electron is transferred from a photosensitive organophosphate electron donor (D) to the NbV electron acceptor (A) through the unoccupied 4 f-orbitals of Ln (f). This work paves the way for developing diverse PONb-based redox materials and expanding the possibility of the applications of PONbs in the redox chemistry. © 2023 Wiley-VCH GmbH.
Keyword:
Reprint 's Address:
Email:
Source :
Angewandte Chemie - International Edition
ISSN: 1433-7851
Year: 2023
Issue: 26
Volume: 62
1 6 . 1
JCR@2023
1 6 . 1 0 0
JCR@2023
ESI HC Threshold:39
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 8
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: