Indexed by:
Abstract:
Polyimide (PI) is widely used in the communication field benefited from its low dielectric properties and good electrical insulating properties, however, its low thermal conductivity simultaneously limits its application in electronic packaging. Delayed heat dissipation can exacerbate the thermal stress generated by device operation to damage electronic structures, thereby affecting work efficiency. As a result, it is necessary to improve the thermal conductivity of polyimide and maintain excellent dielectric performance. Here, we demonstrate the polyimide (BPDA-ODA) composites with ordered structure are prepared by filling commercial polyimides with aramid nanofibers connection nitrides greatly improve thermal conductivity and maintain the low dielectric loss. When the filling amount of SBN@CN is 30 wt%, the thermal conductivity increases to 1.162 W/mK, which is 8 times higher than that of pure PI (0.0147 W/mK). Moreover, thermal stability and mechanical properties are maintained, realizing that the dielectric constant is about 3.81 and the dielectric loss is as low as 0.0034 at 100 MHz, which endows a new insight for the application of polyimide in electronic packaging.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
JOURNAL OF APPLIED POLYMER SCIENCE
ISSN: 0021-8995
Year: 2023
Issue: 41
Volume: 140
2 . 7
JCR@2023
2 . 7 0 0
JCR@2023
ESI Discipline: CHEMISTRY;
ESI HC Threshold:39
JCR Journal Grade:2
CAS Journal Grade:3
Cited Count:
WoS CC Cited Count: 2
SCOPUS Cited Count: 2
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: