• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索

author:

Zhang, X. (Zhang, X..) [1] | Woo, H. (Woo, H..) [2] | Choi, S. (Choi, S..) [3]

Indexed by:

Scopus

Abstract:

Interval power flow (IPF) analysis is a promising approach to handling the uncertainty of renewable energy sources and loads in power systems. However, most existing studies are based on standard interval arithmetic or affine arithmetic. Little work can be found that employs traditional optimization methods to obtain the interval results, especially based on convexified power flow formulation. Therefore, this paper proposes an IPF method based on a hybrid second-order cone and linear programming for radial distribution systems. First, the optimization process of IPF based on the standard power flow model is introduced. Given the non-convexity of the standard power flow model, an IPF framework based on second-order cone programming (SOCP) for radial distribution systems is proposed. Moreover, considering that the SOCP formulation can only achieve half of the whole IPF process, a revised linear DistFlow formulation is adopted, and the IPF method based on a hybrid second-order cone and linear programming is devised. Finally, the proposed IPF method is compared with the standard power flow equation-based IPF method and the Monte Carlo method. The simulation results on modified IEEE 33-node and 69-node distribution systems demonstrate the effectiveness and prospects of the proposed IPF method. © 2023 Elsevier Ltd

Keyword:

Interval power flow Radial distribution system Renewable energy sources Revised linearized distFlow formulation Second-order cone programming

Community:

  • [ 1 ] [Zhang X.]College of Electrical Engineering and Automation, Fuzhou University, Fuzhou, 350116, China
  • [ 2 ] [Woo H.]School of Electrical Engineering, Korea University, Seoul, 02841, South Korea
  • [ 3 ] [Choi S.]School of Electrical Engineering, Korea University, Seoul, 02841, South Korea

Reprint 's Address:

Email:

Show more details

Related Keywords:

Source :

Sustainable Energy, Grids and Networks

ISSN: 2352-4677

Year: 2023

Volume: 36

4 . 8

JCR@2023

4 . 8 0 0

JCR@2023

JCR Journal Grade:1

CAS Journal Grade:3

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count:

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 3

Affiliated Colleges:

Online/Total:298/10035094
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1