Indexed by:
Abstract:
We have developed a controllable solvothermal method to grow intrinsically conductive MoS2 nanosheet arrays in a metastable 1T phase on carbon fiber cloth (CFC) as binder-free, high-activity Li-ion battery (LIB) anodes. By introducing surface hydroxyl groups on the CFC and tuning the DMF content in the mixed solvent, MoS2 nanosheet arrays were perpendicularly grown to the surface of the carbon fibers with a high coverage. Electrochemical measurements reveal that the 1T phase nanosheet arrays have excellent Li-ion storage performances, including high specific capacity, high rate capability and good cycling stability, outperforming 2H phase arrays. Because of the metallic 1T phase and the highly oriented array architecture, after subtracting the total capacity of CFC, the 1T arrays also deliver a high reversible specific capacity of 1789 mA h g(-1) at 0.1 A g(-1) and a retained capacity of 853 mA h g(-1) after 140 cycles at 1 A g(-1).
Keyword:
Reprint 's Address:
Email:
Source :
JOURNAL OF MATERIALS CHEMISTRY A
ISSN: 2050-7488
Year: 2017
Issue: 27
Volume: 5
Page: 14061-14069
9 . 9 3 1
JCR@2017
1 0 . 8 0 0
JCR@2023
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 266
SCOPUS Cited Count: 271
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: