Indexed by:
Abstract:
Tin oxide materials are a class of unique semiconductor materials with widespread technological applications because of their valuable semiconducting, gas sensing, electrical and optical properties in the fields of macro/mesoscopic materials and micro/nanodevices. In this review, we describe the efforts toward understanding the synthetic strategies and formation mechanisms of the micro/nanostructures of various tin dioxide thin films prepared by pulsed laser ablation, highlighting contributions from our laboratory. First, we present the preparation and formation processes of tetragonal-phase tin dioxide thin films with interesting fractal clusters. In addition, the quantum-dot formation and dynamic scaling behavior in tetragonal-phase tin dioxide thin films induced by pulsed delivery will be discussed experimentally and theoretically. Finally, we emphasize the fabrication, properties and formation mechanism of orthorhombic-phase tin dioxide thin films by using pulsed laser deposition. This research may provide a novel approach to modulate their competent performance and promote rational design of micro/nanodevices. Once mastered, tin dioxide thin films with a variety of fascinating micro/nanostructures will offer vast and unforeseen opportunities in the semiconductor industry as well as in other fields of science and technology.
Keyword:
Reprint 's Address:
Email:
Source :
CHEMICAL COMMUNICATIONS
ISSN: 1359-7345
Year: 2015
Issue: 7
Volume: 51
Page: 1175-1184
6 . 5 6 7
JCR@2015
4 . 3 0 0
JCR@2023
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 4
SCOPUS Cited Count: 4
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: