Indexed by:
Abstract:
Feature extraction and intelligent recognition of the vibration signals of pump turbines are significant to reliable and safe operation of a pumped storage power station. Due to its complicated operational conditions, a pump turbine in operation can create a large number of physical sources that excite its vibrations, and the frequency components of the vibration signals are quite complicated. The traditional methods suffer a poor accuracy of feature extraction from a complicated vibration signal. To improve the accuracy, this paper describes a new model of feature extraction and intelligent recognition of the vibration signals, based on the variational mode decomposition (VMD), bubble entropy (BE), and long short-term memory (LSTM) neural network. First, this method analyzes the vibration signal using VMD and obtains several modes. Then for each mode, its BE value is calculated and a BE eigenvector is constructed. Finally, the eigenvectors of the vibration signal are trained and recognized using a LSTM neural network. We have verified the method against the complicated vibration signals measured at the top cover of a pump turbine at the Pushihe pumped storage station, and achieved a signal recognition accuracy of 97.87%, indicating its important engineering application value. © 2023 Tsinghua University Press. All rights reserved.
Keyword:
Reprint 's Address:
Email:
Source :
Journal of Hydroelectric Engineering
ISSN: 1003-1243
CN: 11-2241/TV
Year: 2023
Issue: 12
Volume: 42
Page: 70-78
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: