Indexed by:
Abstract:
Although ammonia-hydrogen blended fuel has become a research hotspot, it is essential to recognize that adding hydrogen to ammonia increases the potential explosion hazard before considering the development of ammoniahydrogen fuel. In this study, the effect of vent area on vented deflagrations of ammonia-hydrogen-air mixtures is investigated in a 1-m-long horizontal rectangular duct with a right end opening at an initial temperature of 293 K and an initial pressure of 101 kPa. A dimensionless vent coefficient K-v is used to define the vent area in this work to clarify the evolution of flame structures and overpressure inside and outside the duct. For a specific K-v, the amplitude of the maximum internal explosion overpressure (P-max) monitored at the left end of the duct (LE) has a greater difference compared with other pressure monitoring points. The maximum amplitude of P(max )is always reached at the LE for K-v <= 3.2, while the difference in the maximum amplitude of P(max )between different monitoring points decreased significantly for K-v > 3.2. With the increasing of K(v )from 2.2 to 20.1, P(max )obtained at the right end of the duct (RE) and the center of the duct increases monotonously, but P(max )monitored at the LE shows a non-monotonic increasing trend. A spike structure of penetrating flame bubbles resulting from negative pressure balance is only observed inside the duct for K-v <= 5.6. Two types of oscillations (Helmholtz and Acoustic oscillations) can be distinguished in some tests, and only acoustic oscillations of overpressure can be clearly found in tests with K-v > 7.8. With the increasing of K(v )from 2.2 to 20.1, the shape of the external fireball will change significantly. As Kv increases from 2.2 to 5.6, the external fireball shapes are always mushroom-shaped. However, the shapes of the fireball become elongated for K-v > 7.8, and even the external fireball presents a jet shape for K-v = 20.1. With the increasing of K-v from 2.2 to 20.1, The maximum external overpressure increases first, thereafter decreases, and finally increases.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
FUEL
ISSN: 0016-2361
Year: 2024
Volume: 362
6 . 7 0 0
JCR@2023
Cited Count:
WoS CC Cited Count: 1
SCOPUS Cited Count: 1
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: