Indexed by:
Abstract:
Photothermal catalytic N-acetylation of aniline has been a promising strategy to synthesize amides, which combined the advantages of thermal catalysis and photocatalysis. Herein, we demonstrate a high-performance strategy to synthesize amides catalyzed by the in-situ formed first-row transition-metal (Fe, Co, Ni, Mn et al.) complexes nanodots (TMC NDs) under solar light excitation without using noble metals or strong acids. The dualfunctional nitriles substrates acted as the ligands to coordinate with transition-metal salts affording photosensitive TMC NDs with high solar-to-thermal energy conversion efficiency. Intramolecular charge transitions reduced the energy barrier of nitriles activation by weakening C---N bond and triggered near-field temperature rise via the electron-phonon scattering non-radiative pathway. The reaction system exhibited good tolerance to different functional groups, affording a series of amide derivatives. Such a dynamic coordination reaction mode and the in-situ formed TMC NDs opens new avenues toward solar-heat conversion via photon-phonon coupling in the field of chemical synthesis.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY
ISSN: 0926-3373
Year: 2024
Volume: 344
2 0 . 3 0 0
JCR@2023
Cited Count:
WoS CC Cited Count: 9
SCOPUS Cited Count: 8
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: