Indexed by:
Abstract:
Photocatalytic hydrogen production based on noble metal-free systems is a promising technology for the conversion of solar energy into green hydrogen, it is pivotal and challenging to tailor-make photocatalysts for achieving high photocatalytic efficiency. Herein, we reported a hollow double-shell dyad through uniformly coating covalent organic frameworks (COFs) on the surface of hollow Co9S8. The double shell architecture enhances the scattering and refraction efficiency of incident light, shortens the transmission distance of the photogenerated charge carriers, and exposes more active sites for photocatalytic conversion. The hydrogen evolution rate is as high as 23.15 mmol g-1 h-1, which is significantly enhanced when compared with that of their physical mixture (0.30 mmol g-1 h-1) and Pt-based counterpart (11.84 mmol g-1 h-1). This work provides a rational approach to the construction of noble-metal-free photocatalytic systems based on COFs to enhance hydrogen evolution performance. Hollow double-shell dyads have been constructed using covalent organic frameworks and transition metal sulfides, the double-shell architecture broadens light absorption, improves hydrogen evolution kinetics and reduces the photogenerated electron transfer resistance, resulting in high performance in photocatalytic hydrogen evolution reaction. image
Keyword:
Reprint 's Address:
Email:
Version:
Source :
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
ISSN: 1433-7851
Year: 2024
Issue: 17
Volume: 63
1 6 . 1 0 0
JCR@2023
Cited Count:
WoS CC Cited Count: 12
SCOPUS Cited Count: 22
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: