Indexed by:
Abstract:
The development of semiconducting materials for photoredox catalysis holds great promise for sustainable utilization of solar energy. Olefin-linked covalent organic frameworks (COFs), which are built by linking organic structs into crystalline frameworks through C=C bonds, have attracted tremendous attention in photocatalysis due to their saliant advantages such as extended pi-conjugation, permanent porosity, exceptional chemical stability, light-harvesting and charge separation abilities. This review offers a comprehensive overview of recent new advances toward the development of olefin-linked COFs and their uses as artificial platforms for photocatalytic applications, like hydrogen evolution, carbon dioxide reduction and organic transformations. Structural design strategies, preparation methods and structure-function relationships in various photoredox reactions are summarized, which is accompanied by various approaches to boost their catalytic performance. The challenges and future prospectives are further discussed.
Keyword:
Reprint 's Address:
Email:
Source :
CHEMSUSCHEM
ISSN: 1864-5631
Year: 2025
7 . 5 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: