Abstract:
提出了一种基于深度学习技术的光伏板缺陷分类定位方法,用于快速准确地确定光伏板缺陷的位置和类型。为了克服传统单张图像缺陷检测方法的视角限制,采用图像配准、拼接等算法生成高分辨率的光伏全景图像,并使用深度学习技术对光伏板红外图像进行缺陷分类,通过与可见光图像进行对比,可以有效地确定光伏板缺陷的类型。光伏板缺陷分类的准确率、精确率、召回率和F1分数分别达到了93.71%、93.13%、93.20%和93.11%。与传统方法相比,该方法具有非接触、高效和快速等优点,适用于大规模光伏板缺陷的检测和定位,能够在短时间内获取准确、全面的光伏板缺陷信息。
Keyword:
Reprint 's Address:
Email:
Version:
Source :
光电子技术
ISSN: 1005-488X
CN: 32-1347/TN
Year: 2024
Issue: 01
Volume: 44
Page: 54-60
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 3
Affiliated Colleges: