Indexed by:
Abstract:
Aerobic photocatalytic oxidation is considered as an efficient and green method to remedy low-concentration H2S pollutants associated with the energy and chemical industries. However, the fabrication of a sulfur-resistant catalyst with good performance is a great challenge because of the poisoning effect of H2S and the difficulty in oxygen (O-2) activation. Herein, a photocatalytic hybrid material composed of chemically stable cobalt phosphide (CoP) and structural base-enriched carbon nitride (CN) was developed for the efficient oxidation of H2S, which could achieve 95% H2S conversion, and its service time could last more than 35 h with over 80% H2S conversion. Reflecting from the characterizations and theoretical simulations, the enhanced H2S conversion was on account that CoP could stimulate the electrons shuttling from the photocatalytic system towards the gaseous O-2, facilitating the production of critical superoxide radical via the O-2 reduction process and accelerating the surface H2S oxidation process. This work provides new insights into the design of a sustainable photocatalytic oxidation system for the treatment of chemically active contaminants through constructing stable interfacial electron transfer channels for prominent O-2 activation.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
JOURNAL OF MATERIALS CHEMISTRY A
ISSN: 2050-7488
Year: 2024
Issue: 24
Volume: 12
Page: 14508-14516
1 0 . 8 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: