Indexed by:
Abstract:
Secure outsourced computation is critical for cloud computing to safeguard data confidentiality and ensure data usability. Recently, secure outsourced computation schemes following a twin-server architecture based on partially homomorphic cryptosystems have received increasing attention. The Secure Outsourced Computation on Integers (SOCI) toolkit is the state-of-the-art among these schemes which can perform secure computation on integers without requiring the costly bootstrapping operation as in fully homomorphic encryption; however, SOCI suffers from relatively large computation and communication overhead. In this paper, we propose SOCI(+ )which significantly improves the performance of SOCI. Specifically, SOCI+ employs a novel (2, 2)-threshold Paillier cryptosystem with fast encryption and decryption as its cryptographic primitive, and supports a suite of efficient secure arithmetic computation on integers protocols, including a secure multiplication protocol (SMUL), a secure comparison protocol (SCMP), a secure sign bit-acquisition protocol (SSBA), and a secure division protocol (SDIV), all based on the (2, 2)-threshold Paillier cryptosystem with fast encryption and decryption. In addition, SOCI+ incorporates an offline and online computation mechanism to further optimize its performance. We perform rigorous theoretical analysis to prove the correctness and security of SOCI+. Compared with SOCI, our experimental evaluation shows that SOCI+ is up to 5.3 times more efficient in online runtime and 40% less in communication overheads.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY
ISSN: 1556-6013
Year: 2024
Volume: 19
Page: 5607-5619
6 . 3 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: