Indexed by:
Abstract:
Two novel phosphors LiBa4(1‒x)Eu4xTa3O12 (H-LBTO:xEu3+) and Li0.25Ba1‒xEuxTa0.75O3 (C-LBTO:xEu3+) were prepared successfully by a molten salt method. The transformation between these two structures was realized by changing the sintering temperature or changing the Eu3+ ions concentration, which was also demonstrated by the X-ray diffraction (XRD), scanning electron microscopy (SEM), diffuse reflectance spectra (DRS), and photoluminescence excitation (PLE) analyses. Both the sintering temperature and the Eu3+ ions doping concentration have significant impact on the formation of the crystal phase. All these phosphors sintered at 1023 K exhibit two major luminescence lines at 594 and 614 nm under near-UV light of 395 nm excitation, corresponding to Eu3+ ions typical transitions of 5D0→7F1 and 5D0→7F2. The optimum concentration of Eu3+ ions is 9 mol% for C-LBTO:xEu3+ samples and the quenching interaction type is the nearest-neighbor ion interaction. The thermal stability of the C-LBTO:0.09Eu3+ sample was investigated in detail and the device application further suggests that C-LBTO:0.09Eu3+ can be used as a red phosphor for near-UV excited w-LEDs in lighting. © 2023 Chinese Society of Rare Earths
Keyword:
Reprint 's Address:
Email:
Source :
Journal of Rare Earths
ISSN: 1002-0721
Year: 2024
Issue: 8
Volume: 42
Page: 1479-1488
5 . 2 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count: 1
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: