Indexed by:
Abstract:
Abstract: Superradiant phase transition and entanglement entropy in the Dicke model with a squeezed light are investigated. We find a special rotation coordinate system mapping the original Hamiltonian into an effective dual-oscillator Hamiltonian in the thermodynamic limit. We analytically derive the eigenenergy and eigenstate of the ground state. The ground state is demonstrated to undergo superradiant phase transition at a nonlinear critical boundary collectively induced by the squeezed driving and qubit-field coupling. This phase boundary requires neither large qubit-field detuning nor strong squeezed driving. An exact expression of the ground-state entropy is obtained. We demonstrate that the squeezed light enhances the qubit-field entanglement entropy linearly. Graphical abstract: (Figure presented.) © The Author(s), under exclusive licence to EDP Sciences, SIF and Springer-Verlag GmbH Germany, part of Springer Nature 2024.
Keyword:
Reprint 's Address:
Email:
Source :
European Physical Journal D
ISSN: 1434-6060
Year: 2024
Issue: 7
Volume: 78
1 . 5 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: