Indexed by:
Abstract:
Electrocaloric cooling based on ferroelectrics is an eco-friendly technology. BaTiO3 (BT)-based ferroelectric ceramics possess a high electrocaloric effect, which is significantly affected by grain size. Herein, fine and large grains' contributions to electrocaloric and related properties in BT-based ceramics are revealed via tuning sintered dwelling time (ts) in discontinuous grain growth (DGG) process with fine and large grains coexistence. With increasing ts, grain size change can be divided into two stages. The main change is the large-grain size (>100–200 μm) and number in the beginning DGG stage, and the properties' evolutions are mainly contributed by large grain change. The bigger grain size of large and fine grains contributes to the higher electrocaloric property, sharper phase transition, ferroelectric polarization (change rate), and coercive field. In the subsequent stage, fine grains gradually grow up (∼4.0–5.0 μm) while large-grain size decreases slightly. Here the properties' evolutions are influenced by the competitive contributions between fine and large grains. Large grain contribution is mainly attributed to the domain size effect, and fine grain contribution should embrace the domain size effect and grain-boundary pinning effect. This work contributes to a broad understanding of fine/large grain contributions in the promising BT-based electrocaloric ceramics. © 2024 Elsevier B.V.
Keyword:
Reprint 's Address:
Email:
Source :
Journal of Alloys and Compounds
ISSN: 0925-8388
Year: 2024
Volume: 1004
5 . 8 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: