Indexed by:
Abstract:
Given the high solubility and mobility of hexavalent chromium in the environment and edible plants, the development of a suitable method for the screening and quantification of Cr(VI) is highly desirable. Herein, a selective and sensitive sensing method for detecting Cr(VI) in food grains was established, using an electrodeposited gold-palladium bimetallic nanoparticles (BNPs) based electrochemical sensor and a microwave digestion procedure for chromium dissolution. The sensor interface was characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and cyclic voltammetry. The results indicate that the fabricated sensor has a larger active surface area and an enhanced electrocatalytic effect compared to the monometallic modification, leading to a significant increase in the electrochemical reduction current of Cr(VI) as a consequence of synergistic effects. Using square wave anodic stripping voltammetry, the sensor demonstrates a wide linear range (5-3000 mu g L-1) and a low detection limit of 2.7 mu g L-1 for Cr(VI), as well as considerable repeatability and stability. Satisfactory selectivity towards Cr(VI) was also demonstrated, even in the presence of 500-fold Cr(III) and 100-fold common heavy metal ions like Cd(II), Pb(II), and Hg(II). The proposed sensing method offers a promising alternative for rapidly identifying toxic Cr(VI) in water and food grains. image
Keyword:
Reprint 's Address:
Email:
Version:
Source :
ELECTROANALYSIS
ISSN: 1040-0397
Year: 2024
Issue: 10
Volume: 36
2 . 7 0 0
JCR@2023
Cited Count:
WoS CC Cited Count: 1
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: