Indexed by:
Abstract:
The supportfree printing of overhanging structure arouses enormous interest for its advantages to eliminate the need for support removal and to improve the efficiency in laser powder bed fusion (L-PBF) additive manufacturing. However, the improvement of down -facing surface quality remains a significant challenge, where an in-depth understanding of the formation of overhanging tracks is essential. This paper developed a multiphysics model of overhanging tracks in L-PBF to systematically investigate the formation mechanisms of key features such as discontinuity and dross, as well as their correlation with surface roughness. It reveals that there are two main causes of discontinuity of overhanging tracks: the coalescence and balling of the melt under low energy density, and the irregular sinking of melt pool at the overhanging edge. The high energy density could mitigate the occurrence of discontinuous tracks, but it might also lead to undesirable dross upon the complete penetration of the overhanging structure. The relationship between processing parameters, morphological defects and surface roughness were systematically discussed, which revealed the necessity to tailor processing parameters for different overhang angles to improve the down -facing surface quality. Furthermore, the significant correlation between the single-track morphology and the down -facing surface roughness has been demonstrated quantitatively, which proposed a practical way to predict the trend of the down -facing surface quality by single-track simulation. This could help improve the supportfree printing process in metal additive manufacturing.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
OPTICS AND LASER TECHNOLOGY
ISSN: 0030-3992
Year: 2024
Volume: 177
4 . 6 0 0
JCR@2023
Cited Count:
WoS CC Cited Count: 2
SCOPUS Cited Count: 2
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0