Indexed by:
Abstract:
The growing demands for X-ray imaging applications impose diverse and stringent requirements on advanced X-ray detectors. Among these, flexibility stands out as the most expected characteristic for next-generation X-ray detectors. Flexible X-ray detectors can spatially conform to nonflat surfaces, substantially improving the imaging resolution, reducing the X-ray exposure dosage, and enabling extended application opportunities that are hardly achievable by conventional rigid flat-panel detectors. Over the past years, indirect- and direct-conversion flexible X-ray detectors have made marvelous achievements. In particular, microscale and nanoscale engineering technologies play a pivotal role in defining the optical, electrical, and mechanical properties of flexible X-ray detectors. In this Perspective, we spotlight recent landmark advancements in flexible X-ray detectors from the aspects of micro/nano engineering strategies, which are broadly categorized into two prevailing modalities: materials-in-substrate and materials-on-substrate. We also discuss existing challenges hindering the development of flexible X-ray detectors, as well as prospective research opportunities to mitigate these issues.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
ACS NANO
ISSN: 1936-0851
Year: 2024
Issue: 40
Volume: 18
Page: 27126-27137
1 5 . 8 0 0
JCR@2023
Cited Count:
SCOPUS Cited Count: 1
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: